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2.6 Stress Analysis of Cracks 

For certain cracked configurations subjected to external forces, it is possible to derive 
closed-form expressions for the stresses in the body, assuming isotropic linear elastic 
material behavior. Westergaard [8], Irwin [9], Sneddon [10], and Williams [11] were among 
the first to publish such solutions. If we define a polar coordinate axis with the origin at 
the crack tip (Figure 2.13), it can be shown that the stress field in any linear elastic cracked 
body is given by 

∞
⎛ k ⎞

⎠⎟ fij ( )θ + ∑ m
m/2 gij 

(m)( )θ (2.41) σij = A r  
⎝⎜ r 

m=0 

where σij is the stress tensor; r and θ are as defined in Figure 2.13; k a constant; and fij is 
a dimensionless function of θ in the leading term. For the higher-order terms, Am is the 

mamplitude and gij 
( ) is a dimensionless function of θ for the mth term. The higher-order 

terms depend on the geometry, but the solution for any given configuration contains a 
leading term that is proportional to 1/ r . As r → 0, the leading term approaches infinity, 
but the other terms remain finite or approach zero. Thus stress near the crack tip varies 
with 1/ r , regardless of the configuration of the cracked body. It can also be shown that 
the displacement near the crack tip varies with r . Equation 2.41 describes a stress singu­
larity, since stress is asymptotic to r = 0. The basis of this relationship is explored in more 
detail in Appendix 2A.3. Recall that the Inglis analysis (Section 2.2) predicts a stress sin­
gularity at the tip of a perfectly sharp crack. 

There are three types of loading that a crack can experience, as Figure 2.14 illustrates. 
Mode I loading, where the principal load is applied normal to the crack plane, tends to 
open the crack. Mode II corresponds to in-plane shear loading and tends to slide one crack 
face with respect to the other. Mode III refers to out-of-plane shear. A cracked body can be 
loaded in any one of these modes, or a combination of two or three modes. 

2.6.1 The Stress Intensity Factor 

Each mode of loading produces the 1/ r  singularity at the crack tip, but the proportion­
ality constant, k, and fij depend on the mode. It is convenient at this point to replace k by 

σyy
y 

τxy 

σxx 

τyxr 

θ 

Crack 
x 

FIGURE 2.13 
Definition of the coordinate axis ahead of a crack tip. The z direction is normal to the page. 
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Mode I Mode II Mode III 
(opening) (in-plane shear) (out-of-plane shear) 

FIGURE 2.14 
The three modes of loading that can be applied to a crack. 

the stress intensity factor, K, where K k 2π . The stress intensity factor is usually given a = 
subscript to denote the mode of loading; that is, KI, KII, or KIII. Thus the stress fields ahead 
of a crack tip in an isotropic linear elastic material can be written as 

(I) KI ( )I ( )lim σij = fij θ (2.42) 
r→0 2πr 

( )II II ( )lim σij = K 
fij 

II ( )θ (2.43) 
r→0 2πr 

( )III III ( )lim σij = K 
fij 

III ( )θ (2.44) 
r→0 2πr 

for Modes I, II, and III, respectively. In a mixed-mode problem (i.e., when more than one 
loading mode is present), the individual contributions to a given stress component are 
additive: 

(total  ) ( )I ( )  IIIσ = σ + σ II + σ( )  (2.45) ij ij ij ij 

Equation 2.45 stems from the principle of linear superposition. 
Detailed expressions for the singular stress fields for Modes I and II are given in Table 2.1, 

where the stress tensors are expressed in Cartesian coordinates. Displacement relation­
ships for Modes I and II are listed in Table 2.2. Table 2.3 lists the nonzero stress and dis­
placement components for Mode III. 

Consider the Mode I singular field on the crack plane, where θ = 0. According to Table 2.1, 
the stresses in the x and y direction are equal: 

σxx = σyy = KI (2.46) 
2πr 
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46 Fracture Mechanics: Fundamentals and Applications

When θ = 0, the shear stress is zero, which means that the crack plane is a principal 
plane for pure Mode I loading. Figure 2.15 is a schematic plot of σyy, the stress normal to 
the crack plane, versus the distance from the crack tip. Equation 2.46 is valid only near 
the crack tip, where the 1/ r  singularity dominates the stress �eld. Stresses far from the 
crack tip are governed by the remote boundary conditions. For example, if the cracked 

TABLE 2.1

Stress Fields Ahead of a Crack Tip for Modes I and II in a Linear Elastic, Isotropic 
Material

Mode I Mode II

σxx

σyy

τxy

KI  θ   θ cos 1 − sin sin
    2 rπ 2  2

KI  θ   θ cos 1 + sin sin
    2 rπ 2  2

KI  θ  θ  3θcos sin cos
     2 rπ 2 2 2

3θ
2

3θ
2















KII  θ   θ  3θ− sin 2 + cos cos
     2 rπ 2  2 2

KII  θ  θ  3θsin cos cos
     2 rπ 2 2 2

KII  θ   θ  3θ 
cos 1 − sin sin

      2 rπ 2  2 2 





σzz 0 (Plane Stress) 0 (Plane Stress)
ν σ( xx + σyy ) (Plane Strain) ν σ( xx + σyy ) (Plane Strain)

τxz, τyz 0 0

Note: ν is Poisson’s ratio.

TABLE 2.3

Nonzero Stress and Displacement Components 
in Mode III (Linear Elastic, Isotropic Material)

τ
π

θ
xz

K
r

= − 





III

2 2
sin

τ
π

θ
yz

K
r

= 





III

2 2
cos

u
K r

z = 





2
2 2

III

µ π
θ

sin

TABLE 2.2

Crack Tip Displacement Fields for Modes I and II (Linear Elastic, Isotropic Material)

Mode I Mode II

ux
K rI

2 2 2
1 2

2
2

µ π
θ κ θ

cos sin





− + 















K rII

2 2 2
1 2

2
2

µ π
θ κ θ

sin cos





+ + 















uy K rI

2 2 2
1 2

2
2

µ π
θ κ θ

sin cos





+ − 













 − 





− − 















K rII

2 2 2
1 2

2
2

µ π
θ κ θ

cos sin

Note: μ is the shear modulus; κ = 3 − 4ν (plane strain); κ = (3 − ν)/(1 + ν) (plane stress).
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47 Linear Elastic Fracture Mechanics 

σyy 

σ ∞ 

θ = 0 

KI 
2πr 

Singularity-dominated 
zone 

r 

FIGURE 2.15 
Stress normal to the crack plane in Mode I. 

structure is subjected to a uniform remote tensile stress, σyy approaches a constant value, 
σ∞. We can define a singularity-dominated zone as the region where the equations in Tables 
2.1 through 2.3 describe the crack tip fields. 

The stress intensity factor defines the amplitude of the crack tip singularity. That is, 
stresses near the crack tip increase in proportion to K. Moreover, the stress intensity factor 
completely defines the crack tip conditions; if K is known, it is possible to solve for all com­
ponents of stress, strain, and displacement as a function of r and θ. This single-parameter 
description of crack tip conditions turns out to be one of the most important concepts in 
fracture mechanics. 

2.6.2 Relationship between K and Global Behavior 

In order for the stress intensity factor to be useful, one must be able to determine K from 
remote loads and the geometry. Closed-form solutions for K have been derived for a num­
ber of simple configurations. For more complex situations, the stress intensity factor can be 
estimated by experiment or numerical analysis (see Chapter 12). 

One configuration for which a closed-form solution exists is a through crack in an 
infinite plate subjected to remote tensile stress (Figure 2.3). Since the remote stress, σ, is 
perpendicular to the crack plane, the loading is pure Mode I. Linear elastic bodies must 
undergo proportional stressing; that is, all stress components at all locations increase 
in proportion to the remotely applied forces. Thus, the crack tip stresses must be pro­
portional to the remote stress, and KI is proportional to σ. According to Equations 2.42 
through 2.44, stress intensity has units of stress length. Since the only relevant length 
scale in Figure 2.3 is the crack size, the relationship between KI and the global conditions 
must have the following form: 

KI = O (σ a ) (2.47) 

The actual solution, which is derived in Appendix 2A.3, is given by 

KI = σ π a (2.48) 
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48 Fracture Mechanics: Fundamentals and Applications 

σ 

a 

FIGURE 2.16 
Edge crack in a semi-infinite plate subject to a remote tensile stress. 

Thus, the amplitude of the crack tip singularity for this configuration is proportional to 
the remote stress and the square root of crack size. The stress intensity factor for Mode II 
loading of the plate in Figure 2.3 can be obtained by replacing σ in Equation 2.48 by the 
remotely applied shear stress (see Figure 2.18 and Equations 2.50 and 2.51). 

A related solution is that for a semi-infinite plate with an edge crack (Figure 2.16). Note 
that this configuration can be obtained by slicing the plate in Figure 2.3 through the mid­
dle of the crack. The stress intensity factor for the edge crack is given by 

KI = 1 12σ πa (2.49) . 

which is similar to Equation 2.48. The 12% increase in KI for the edge crack is caused by 
different boundary conditions at the free edge. As Figure 2.17 illustrates, the edge crack 

Through crack 

FIGURE 2.17 
Comparison of crack opening displacements for an edge crack and through crack. The edge crack opens wider 
at a given stress, resulting in a stress intensity that is 12% higher. 
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(a) 
σ

β 

2a

y' 

σx'x' 

σy'y'τy'x' 

τx'y' 

x' 

y 

(b) 

a 

x 

FIGURE 2.18 
Through crack in an infinite plate for the general case where the principal stress is not perpendicular to the 
crack plane. 

opens more because it is less restrained than the through crack, which forms an elliptical 
shape when loaded. 

Consider a through crack in an infinite plate where the normal to the crack plane is 
oriented at an angle β with the stress axis (Figure 2.18a). If β ≠ 0, the crack experiences 
combined Modes I and II loading; KIII = 0 as long as the stress axis and the crack normal 
both lie in the plane of the plate. If we redefine the coordinate axis to coincide with crack 
orientation (Figure 2.18b), we see that the applied stress can be resolved into normal and 
shear components. The stress normal to the crack plane, σy y′ ′ , produces pure Mode I load­
ing, while τ ′ ′  applies Mode II loading to the crack. The stress intensity factors for the x y

plate in Figure 2.18 can be inferred by relating σ ′ ′  and τx yy y ′ ′ to σ and β through Mohr’s 
circle: 

KI = σy y′ ′ πa 

= σ 2 β πacos (  ) (2.50) 

and 

KII = τx y  πa′ ′  

= σ β β πa (2.51) sin( )cos( )  

Note that Equations 2.50 and 2.51 reduce to pure Mode I solution when β = 0. The 
maximum KII occurs at β = 45°, where the shear stress is also at a maximum. Section 2.11 
addresses fracture under mixed-mode conditions. 
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50 Fracture Mechanics: Fundamentals and Applications 

The penny-shaped crack in an infinite medium (Figure 2.4) is another configuration for 
which a closed-form KI solution exists [11]: 

2
KI = σ πa (2.52) 

π

where a is the crack radius. Note that Equation 2.52 has the same form as the previous 
relationships for a through crack, except that the crack radius is the characteristic length 
in the above equation. The more general case of an elliptical or semi-elliptical flaw is 
illustrated in Figure 2.19. In this instance, two length dimensions are needed to charac­
terize the crack size: 2c and 2a, the major and minor axes of the ellipse, respectively (see 
Figure 2.19). Moreover, when a < c, the stress intensity factor varies along the crack front, 
with the maximum KI at ϕ = 90°. The flaw shape parameter, Q, is obtained from an ellip­
tic integral, as discussed in Appendix 2A.4. Figure 2.19 gives an approximate solution for 
Q. The surface correction factor, λs, is also an approximation. 

Embedded crack Surface crack 
σ σ 

2a 

2c 
2c 

a 

ϕ 

K a 
Q 

fI = σ  
π φ( )  

Q a 
c 

= +1 1  464 
1 65 

. (a/c ≤ 1) 
. 

K a 
Q 

fsI = λ σ 
π φ( )  

f a 
c

( )  sin (  )  cos ( )  φ φ φ= +2 
2 

2 

1 
4 

λ s 
a 
c 

= − + −1 13 0  09 1 0  1 1  . . [ . (  sin 2φ) ]  

FIGURE 2.19 
Mode I stress intensity factors for elliptical and semi-elliptical cracks. These solutions are valid only as long as 
the crack is small compared with the plate dimensions and a ≤ c. 
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51 Linear Elastic Fracture Mechanics 

2.6.3 Effect of Finite Size 

Most configurations for which there is a closed-form K solution consist of a crack with a 
simple shape (e.g., a rectangle or ellipse) in an infinite plate. Stated another way, the crack 
dimensions are small compared with the size of the plate; the crack tip conditions are not 
influenced by external boundaries. As the crack size increases, or as the plate dimensions 
decrease, the outer boundaries begin to exert an influence on the crack tip. In such cases, a 
closed-form stress intensity solution is usually not possible. 

Consider a cracked plate subjected to remote tensile stress. Figure 2.20 schematically 
illustrates the effect of finite width on the crack tip stress distribution, which is repre­
sented by lines of force; the local stress is proportional to the spacing between lines of 
force. Since a tensile stress cannot be transmitted through a crack, the lines of force are 
diverted around the crack, resulting in a local stress concentration. In the infinite plate, 
the line of force at a distance W from the crack centerline has force components in x and y 
directions. If the plate width is restricted to 2W, the x force must be zero on the free edge; 
this boundary condition causes the lines of force to be compressed, which results in higher 
stress intensification at the crack tip. 

One technique to approximate the finite width boundary condition is to assume a peri­
odic array of collinear cracks in an infinite plate (Figure 2.21). The Mode I stress intensity 
factor for this situation is given by 

/
⎡ 2W ⎛ πa ⎞ ⎤

1 2  

KI = σ πa ⎢
⎣ πa 

tan ⎝⎜ 2W ⎠⎟ ⎥
⎦

(2.53) 

The stress intensity approaches the infinite plate value as a/W approaches zero; KI is 
asymptotic to a/W = 1. 

σ σ 

2W 2W 

Fy 

Fx 

(a) (b) 

FIGURE 2.20 
Stress concentration effects due to a through crack in finite and infinite width plates: (a) infinite plate and (b) 
finite plate. 
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52 Fracture Mechanics: Fundamentals and Applications

More accurate solutions for a through crack in a �nite plate have been obtained from 
�nite element analysis; solutions of this type are usually �t to a polynomial expression. 
One such solution [12] is given by

 

  πa 
1 2/    a 

2
 a 

4 
K aI = σ π sec .   1 0− 025  + 0 0. 6   (2.54) 2 W   W   w     

Figure 2.22 compares the �nite-width corrections in Equations 2.53 and 2.54. The secant 
term (without the polynomial term) in Equation 2.54 is also plotted. Equation 2.53 agrees 
with the �nite element solution to within 7% for a/W < 0.6. The secant correction is much 
closer to the �nite element solution; the error is less than 2% for a/W < 0.9. Thus, the poly-
nomial term in Equation 2.54 contributes little and can be neglected in hand calculations.

Table 2.4 lists the stress intensity solutions for several common con�gurations. These KI

solutions are plotted in Figure 2.23. Several handbooks devoted solely to stress intensity 
solutions have been published [12–14].

Although stress intensity solutions are given in a variety of forms, K can always be 
related to the through crack (Figure 2.4) through an appropriate correction factor:

 K Y( ,I II , )III = σ πa (2.55) 

where σ is a characteristic stress, a the characteristic crack dimension, and Y is a dimen-
sionless constant that depends on geometry and mode of loading.

EXAMPLE 2.4

Show that the KI solution for the single-edge notched tensile panel reduces to Equation 
2.49 when a ≪ W.

Solution

All of the KI expressions in Table 2.4 are of the form

 

P  a KI = f  B W  w 

where P is the applied force, B the plate thickness, and f(a/W) is a dimensionless func-
tion. The above equation can be expressed in the form of Equation 2.55:

σ

2W

2a

FIGURE 2.21
Collinear cracks in an in�nite plate subjected to remote tension.
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5 

KI 4 
σ πa 

3 

2 

1 

0 

2a 

2W 

Equation 2.53
Equation 2.54
Secant term in Equation 2.54 

0	 0.2 0.4 0.6 0.8 1.0 
a/W 

FIGURE 2.22 
Comparison of finite-width corrections for a center-cracked plate in tension. 

25 

20 

15 

10 

5 

0 

f(
a/

W
) 

CCT 

DENT 

SENT Compact 

P 
B W  W 

KI = f a 
SE(B)

(S/W = 4) 

0 0·2 0·4 0·6 0·8 1 
a/W 

FIGURE 2.23 
Plot of stress intensity solutions from Table 2.4. 
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TABLE 2.4

KI Solutions for Common Test Specimens

Geometry
f 


a

W



a

Single-edge notched tension (SENT)

a
W

Single-edge notched bend (SE(B))

P/2 S

P

P/2

2 tan(π 2a W/ )   a 
0 752. + 2 02.

 cos(π 2a W/ )  W
3  πa + 0 37 1. − sin  2W 

3(S W/ ) /a W 
1 99 .3 2/

2 1( + 2(a W/ ) 1)( − (a W/ )) 

a
W

2 a   a    a   a  − 1− 2 15. 3− ..93 .2 7 
   

+
 W W W W  

P

Center-cracked tension (CCT)

P

2πa  πa   a sec 1 0 025 − .
   W4 W2  W

2W 2a
4  a + 0 06.  W 

Double-edge notched tension (DENT)

a
P

2πa W/2  a   a 1 122 . − 0 561. 0 205.
 

−
 1 − (a W/ )  W W

2W
3 4

a  a   + 0 471. 0.190  
+

 W W 

Compact specimen

P
2 + (a W/ )   a   a 

/ 0 886. + 4 64. 13 32.3 2  
−

 1( − (a W/ ))  W W

2

a 1.25 W

3 4  a   a + 14..72 .5 60  
−

 W W 

W

Source:  Adapted from Tada, H., Paris, P.C., and Irwin, G.R., The Stress Analysis of Cracks Handbook 
Productions, Inc., St. Louis, 1985.

P  a aKI = f  where B is the specimen thickness.
 

,
B W W

(2nd ed.), Paris 
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P ⎛ a ⎞ P ⎛ a ⎞ W 
B W

f
⎝⎜ w ⎠⎟ = 

BW 
f

⎝⎜ w ⎠⎟ πa 
πa Yσ πa= 

where 

⎛ a ⎞
⎠⎟ π 

W
Y = f

⎝⎜ W a 

In the limit of a small flaw, the geometry correction factor in Table 2.4 becomes 

⎛ a ⎞ πa 
/
lim 

→0 
f

⎝⎜ W ⎠⎟
= [ .  + 0 370 752 . ]

a W  W 

Thus, 

lim Y = .1 122 
a W/ →0 

2.6.4 Principle of Superposition 

For linear elastic materials, individual components of stress, strain, and displacement are 
additive. For example, two normal stresses in the x direction imposed by different external 
forces can be added to obtain the total σxx, but a normal stress cannot be summed with a 
shear stress. Similarly, stress intensity factors are additive as long as the mode of loading 
is consistent. That is, 

(total ) A B ( )KI = KI 
( )  + KI 

( )  + KI
C 

but 

K(total) ≠ KI + KII + KIII 

In many instances, the principle of superposition allows stress intensity solutions for 
complex configurations to be built from simple cases for which the solutions are well 
established. Consider, for example, an edge-cracked panel (Table 2.4) subject to combined 
membrane (axial) loading, Pm, and three-point bending, Pb. Since both types of loading 
impose pure Mode I conditions, the KI values can be added: 

KI 
(total ) = KI 

(membrane ) + KI 
(bending ) 

1 ⎡ ⎛ a ⎞ ⎛ a ⎞ ⎤ (2.56) 
= P f  P f⎢ m m ⎝⎜ W ⎠⎟

+ b b ⎝⎝⎜ W ⎠⎟ ⎥
⎣ ⎦

where fm and fb are the geometry correction factors for membrane and bending loading, 
respectively, listed in Table 2.4 and plotted in Figure 2.23. 

B W  
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(a) (b) (c) 

p 

p 

–p 

p 

FIGURE 2.24 
Determination of KI for a semi-elliptical surface crack under internal pressure, p, by means of the principle of 
superposition. 

EXAMPLE 2.5 

Determine the stress intensity factor for a semi-elliptical surface crack subjected to an 
internal pressure, p (Figure 2.24a). 

Solution 

The principle of superposition enables us to construct the solution from known cases. 
One relevant case is the semi-elliptical surface flaw under uniform remote tension, 
p (Figure 2.24b). If we impose a uniform compressive stress, −p, on the crack surface 
(Figure 2.24c), KI = 0 because the crack faces close and the plate behaves as if the crack 
were not present. The loading configuration of interest is obtained by subtracting the 
stresses in Figure 2.24c from those of Figure 2.24b: 

KI 
( )a = KI 

( )b − KI 
( )c 

πa πa = λsp 
Q

f ( )φ − 0 = λsp 
Q

f ( )φ 

Example 2.5 is a simple illustration of a more general concept: namely, stresses acting 
on the boundary (i.e., tractions) can be replaced with tractions that act on the crack face, 
such that the two loading configurations (boundary tractions vs. crack face tractions) 
result in the same stress intensity factor. Consider an uncracked body subject to a bound­
ary traction P(x), as illustrated in Figure 2.25. This boundary traction results in a normal 
stress distribution p(x) on Plane A–B. To confine the problem to Mode I, let us assume 
that no shear stresses act on Plane A–B. (This assumption is made only for the sake of 
simplicity; the basic principle can be applied to all three modes of loading.) Now assume 
that a crack that forms on Plane A–B and the boundary traction, P(x), remains fixed, as 
Figure 2.26a illustrates. If we remove the boundary traction and apply a traction p(x) on the 
crack face (Figure 2.26b), the principle of superposition indicates that the applied KI will 
be unchanged. That is, 

( )a ( )b ( )  b ( )KI = KI + KI
c = KI 

( )  (since KI
c = 0) 
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P(x) 

y 

x A B 

p(x) 

FIGURE 2.25 
Uncracked body subjected to an arbitrary boundary traction P(x), which results in a normal stress distribution 
p(x) acting on Plane A–B. 

2.6.5 Weight Functions 

When one performs an analysis to infer a stress intensity factor for a cracked body, the K 
value that is computed applies only to one particular set of boundary conditions; different 
load cases result in different stress intensity factors for that geometry. It turns out, how­
ever, that the solution to one set of boundary conditions contains sufficient information to 
infer K for any other boundary conditions on that same geometry. 

Consider two arbitrary loading conditions on an isotropic elastic cracked body in plane 
stress or plane strain. For now, we assume that both loadings are symmetric with respect 
to the crack plane, such that pure Mode I loading is achieved in each case. Suppose that 

( )we know the stress intensity factor for loading (1) and we wish to solve for KI 
2 , the stress 

(a)	 (b) (c) 
P(x) P(x) 

–p(x)p(x) 

FIGURE 2.26 
Application of superposition to replace a boundary traction P(x) with a crack face traction p(x) that results in 
the same KI. 
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1intensity factor for the second set of boundary conditions. Rice [15] has shown that KI 
( ) and 

2KI 
( ) are related as follows: 

2 ⎢ i i ⎥KI 
( )  = 

2K
E′ 

( )  ⎢

⎡
∫Ti 

∂
∂ 
u
a 

( )1 

dΓ +∫ Fi 
∂
∂ 
u
a 

( )1 

dA 
⎥

⎤ 
(2.57) 1 

I ⎣ Γ A ⎦ 

where Γ and A are the perimeter and area of the body, respectively, and ui are the displace­
ments in x and y directions. Since loading systems (1) and (2) are arbitrary, it follows that 

( ) ( ) ( )KI 
2  cannot depend on KI 

1  and ui 
1 . Therefore, the function 

1E ∂ui 
( )  

h xi ( )  (2.58) ( )  = 12KI ∂a 

where xi represents the x and y coordinates, must be independent of the nature of loading 
system (1). Bueckner [16] derived a result similar to Equation 2.58 two years before Rice, 
and referred to h as a weight function. 

Weight functions are first-order tensors that depend only on the geometry of the cracked 
body. Given the weight function for a particular configuration, it is possible to compute KI 

from Equation 2.57 for any boundary conditions. Moreover, the previous section invoked 
the principle of superposition to show that any loading configuration can be represented 
by appropriate tractions applied directly to the crack face. Thus, KI for a 2D cracked body 
can be inferred from the following expression: 

KI p x h x dx (2.59) = ∫ ( ) ( )  
Γc 

where p(x) is the crack face traction (equal to the normal stress acting on the crack plane 
when the body is uncracked) and Γc is the perimeter of the crack. The weight function, h(x), 
can be interpreted as the stress intensity resulting from a unit force applied to the crack 
face at x, and the above integral represents the superposition of the KI values from discrete 
opening forces along the crack face. 

EXAMPLE 2.6 

Derive an expression for KI for an arbitrary traction on the face of a through crack in an 
infinite plate. 

Solution 

We already know KI for this configuration when a uniform tensile stress is applied: 

KI = σ π a 

where a is the half crack length. From Equation 2A.74 and 2A.75, the opening displace­
ment of the crack faces in this case is given by 

2σ 
uy = ±  x a(2 − x)

E′ 
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where the x–y coordinate axis is defined in Figure 2.27a. Since the crack length is 2a, we 
must differentiate uy with respect to 2a rather than a: 

∂uy 2σ x= ±
∂ 2a E 2 −( ) a x  

Thus, the weight function for this crack geometry is given by 

1 x
h x( )  = ±  

a 2a xπ − 

If we apply a surface traction of ±p(x) on the crack faces, the Mode I stress intensity 
factor for the two crack tips is as follows: 

2a 
1 x 

p xKI(x=2a) =
πa ∫ ( )  

2a x− 
dx 

0 

2a 
−

( )  dxKI(x=0) = 1 ∫ p x  
2a x  

πa x 
0 

The weight function concept is not restricted to 2D bodies, Mode I loading, or isotropic 
elastic materials. In their early work on weight functions, Rice [15] extended the theory to 
three dimensions, Bueckner [16] considered combined Mode I/II loading, and both allowed 
for anisotropy in the elastic properties. Subsequent researchers [17–22] have shown that 
the theory applies to all linear elastic bodies that contain an arbitrary number of cracks. 

For mixed-mode problems, separate weight functions are required for each mode: hI, hII, 
and hIII. Since the stress intensity factors can vary along a 3D crack front, the weight func­
tions also vary along the crack front. That is, 

h = h  x a( , )a i η (2.60) 

where α(=1,2,3) indicates the mode of loading and η is the crack front position. 

(a) (b) 

p(x) 
y 

x x = 0 

uy(x) 

x = 2a 

FIGURE 2.27 
Through-crack configuration analyzed in Example 2.6: (a) Definition of coordinate axes and (b) arbitrary trac­
tion applied to crack faces. 
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