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2.6 Stress Analysis of Cracks

For certain cracked configurations subjected to external forces, it is possible to derive
closed-form expressions for the stresses in the body, assuming isotropic linear elastic
material behavior. Westergaard [8], Irwin [9], Sneddon [10], and Williams [11] were among
the first to publish such solutions. If we define a polar coordinate axis with the origin at
the crack tip (Figure 2.13), it can be shown that the stress field in any linear elastic cracked
body is given by

Gjj = (\;{;jﬁj(e) £ A" (6) (2.41)

where o is the stress tensor; r and 0 are as defined in Figure 2.13; k a constant; and f;; is
a dimensionless function of 8 in the leading term. For the higher-order terms, A, is the
amplitude and g{"” is a dimensionless function of 6 for the mth term. The higher-order
terms depend on the geometry, but the solution for any given configuration contains a
leading term that is proportional to 1/+/r. As r — 0, the leading term approaches infinity,
but the other terms remain finite or approach zero. Thus stress near the crack tip varies
with 1/+/r, regardless of the configuration of the cracked body. It can also be shown that
the displacement near the crack tip varies with /v . Equation 2.41 describes a stress singu-
larity, since stress is asymptotic to r = 0. The basis of this relationship is explored in more
detail in Appendix 2A.3. Recall that the Inglis analysis (Section 2.2) predicts a stress sin-
gularity at the tip of a perfectly sharp crack.

There are three types of loading that a crack can experience, as Figure 2.14 illustrates.
Mode I loading, where the principal load is applied normal to the crack plane, tends to
open the crack. Mode II corresponds to in-plane shear loading and tends to slide one crack
face with respect to the other. Mode III refers to out-of-plane shear. A cracked body can be
loaded in any one of these modes, or a combination of two or three modes.

2.6.1 The Stress Intensity Factor

Each mode of loading produces the 1/y/r singularity at the crack tip, but the proportion-
ality constant, k, and f; depend on the mode. It is convenient at this point to replace k by
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FIGURE 2.13
Definition of the coordinate axis ahead of a crack tip. The z direction is normal to the page.
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Mode I Mode IT Mode III
(opening) (in-plane shear) (out-of-plane shear)

- »

FIGURE 2.14
The three modes of loading that can be applied to a crack.

the stress intensity factor, K, where K=k+/2r. The stress intensity factor is usually given a
subscript to denote the mode of loading; that is, K, K;;, or K;;;. Thus the stress fields ahead
of a crack tip in an isotropic linear elastic material can be written as

hincs“)— J_ fi(®) (242)

11m<s<H>— \/_ fi(e) (2.43)
() _ KIII (III)

limof n ﬁ (2.44)

for Modes I, 11, and III, respectively. In a mixed-mode problem (i.e., when more than one
loading mode is present), the individual contributions to a given stress component are
additive:

G = 60 + 6 + G (245)

Equation 2.45 stems from the principle of linear superposition.

Detailed expressions for the singular stress fields for Modes I and Il are given in Table 2.1,
where the stress tensors are expressed in Cartesian coordinates. Displacement relation-
ships for Modes I and II are listed in Table 2.2. Table 2.3 lists the nonzero stress and dis-
placement components for Mode II1.

Consider the Mode I singular field on the crack plane, where 6 = 0. According to Table 2.1,
the stresses in the x and y direction are equal:

(2.46)
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TABLE 2.1
Stress Fields Ahead of a Crack Tip for Modes I and Il in a Linear Elastic, Isotropic
Material
Mode I Mode IT
[ K, cos(gj 1—sin(9jsin(&) Y sin(g) 2+cos(9jcos($)
\2nr 2 2 2 271 2 2 2

[¢] Ki cos 9 1+sin 9 sin 36 Ky Sin(gjcos(gjcos(ﬁ)
vy N 2 2 2 2nr 2 2 2
K; 0). (6 30 Ky 0 . (8). (36

Ty cos| — |sin| — |cos| — 1= A v

! J2nr (2] (zj (2] o )2 2
C,, 0 (Plane Stress) 0 (Plane Stress)

V(O +0,,) (Plane Strain) V(G +6,,) (Plane Strain)

T T, 0 0

xz/ “yz

Note: v is Poisson’s ratio.

TABLE 2.2
Crack Tip Displacement Fields for Modes I and II (Linear Elastic, Isotropic Material)
Mode I Mode II
U, K Lcos(gj x—1+2sin’ (gj K Lsin(gj K+1+2cos’ [g)
’ 2u \ 2n 2 2 2u '\ 2w 2 2

Uy /
& Lsin 9 K+1-2cos’ 9 —& Lcos E K—1-2sin® 9
2u N 2n 2 2 2u \ 2w 2 2

Note: p is the shear modulus; k =3 — 4v (plane strain); k = (3 —v)/(1 + V) (plane stress).

When 6 =0, the shear stress is zero, which means that the crack plane is a principal
plane for pure Mode I loading. Figure 2.15 is a schematic plot of 6,,, the stress normal to
the crack plane, versus the distance from the crack tip. Equation 2.46 is valid only near
the crack tip, where the 1/4/r singularity dominates the stress field. Stresses far from the
crack tip are governed by the remote boundary conditions. For example, if the cracked

TABLE 2.3

Nonzero Stress and Displacement Components
in Mode III (Linear Elastic, Isotropic Material)

_ Km . (9)
Ty, =———=SIn| —
2nr 2

T, = K cos(g]
v Lnr 2

u, = 2Km /Lsin 8
Top Non o \2
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Singularity-dominated
zone

FIGURE 2.15
Stress normal to the crack plane in Mode I.

structure is subjected to a uniform remote tensile stress, 6,, approaches a constant value,
o~. We can define a singularity-dominated zone as the region where the equations in Tables
2.1 through 2.3 describe the crack tip fields.

The stress intensity factor defines the amplitude of the crack tip singularity. That is,
stresses near the crack tip increase in proportion to K. Moreover, the stress intensity factor
completely defines the crack tip conditions; if K is known, it is possible to solve for all com-
ponents of stress, strain, and displacement as a function of  and 0. This single-parameter
description of crack tip conditions turns out to be one of the most important concepts in
fracture mechanics.

2.6.2 Relationship between K and Global Behavior

In order for the stress intensity factor to be useful, one must be able to determine K from
remote loads and the geometry. Closed-form solutions for K have been derived for a num-
ber of simple configurations. For more complex situations, the stress intensity factor can be
estimated by experiment or numerical analysis (see Chapter 12).

One configuration for which a closed-form solution exists is a through crack in an
infinite plate subjected to remote tensile stress (Figure 2.3). Since the remote stress, o, is
perpendicular to the crack plane, the loading is pure Mode 1. Linear elastic bodies must
undergo proportional stressing; that is, all stress components at all locations increase
in proportion to the remotely applied forces. Thus, the crack tip stresses must be pro-
portional to the remote stress, and K; is proportional to 6. According to Equations 2.42
through 2.44, stress intensity has units of stress ,/length. Since the only relevant length
scale in Figure 2.3 is the crack size, the relationship between K; and the global conditions
must have the following form:

K =0(cva) (247)

The actual solution, which is derived in Appendix 2A.3, is given by

K; =o+ma (2.48)
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FIGURE 2.16
Edge crack in a semi-infinite plate subject to a remote tensile stress.

Thus, the amplitude of the crack tip singularity for this configuration is proportional to
the remote stress and the square root of crack size. The stress intensity factor for Mode 11
loading of the plate in Figure 2.3 can be obtained by replacing ¢ in Equation 2.48 by the
remotely applied shear stress (see Figure 2.18 and Equations 2.50 and 2.51).

A related solution is that for a semi-infinite plate with an edge crack (Figure 2.16). Note
that this configuration can be obtained by slicing the plate in Figure 2.3 through the mid-
dle of the crack. The stress intensity factor for the edge crack is given by

K, =1.120na (2.49)

which is similar to Equation 2.48. The 12% increase in K; for the edge crack is caused by
different boundary conditions at the free edge. As Figure 2.17 illustrates, the edge crack

Through crack

FIGURE 2.17
Comparison of crack opening displacements for an edge crack and through crack. The edge crack opens wider
at a given stress, resulting in a stress intensity that is 12% higher.
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FIGURE 2.18
Through crack in an infinite plate for the general case where the principal stress is not perpendicular to the
crack plane.

opens more because it is less restrained than the through crack, which forms an elliptical
shape when loaded.

Consider a through crack in an infinite plate where the normal to the crack plane is
oriented at an angle B with the stress axis (Figure 2.18a). If B # 0, the crack experiences
combined Modes I and II loading; K;;; = 0 as long as the stress axis and the crack normal
both lie in the plane of the plate. If we redefine the coordinate axis to coincide with crack
orientation (Figure 2.18b), we see that the applied stress can be resolved into normal and
shear components. The stress normal to the crack plane, 6,,, produces pure Mode I load-
ing, while 1.,  applies Mode II loading to the crack. The stress intensity factors for the
plate in Figure 2.18 can be inferred by relating ¢, and 1., to ¢ and B through Mohr’s
circle:

K;= Gy'y’\/n_a
=6 cos?(B)Vma (2.50)

and

Ky = Tx'y’\/a
= osin(B) cos(B)Wma (2.51)
Note that Equations 2.50 and 2.51 reduce to pure Mode I solution when B=0. The

maximum Kj; occurs at B =45° where the shear stress is also at a maximum. Section 2.11
addresses fracture under mixed-mode conditions.
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The penny-shaped crack in an infinite medium (Figure 2.4) is another configuration for
which a closed-form K| solution exists [11]:

K; = gcs ma (2.52)
T

where g is the crack radius. Note that Equation 2.52 has the same form as the previous
relationships for a through crack, except that the crack radius is the characteristic length
in the above equation. The more general case of an elliptical or semi-elliptical flaw is
illustrated in Figure 2.19. In this instance, two length dimensions are needed to charac-
terize the crack size: 2c and 24, the major and minor axes of the ellipse, respectively (see
Figure 2.19). Moreover, when a < ¢, the stress intensity factor varies along the crack front,
with the maximum K| at ¢ = 90°. The flaw shape parameter, Q, is obtained from an ellip-
tic integral, as discussed in Appendix 2A 4. Figure 2.19 gives an approximate solution for
Q. The surface correction factor, A, is also an approximation.

Embedded crack Surface crack
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277,
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A, = [1.13—0.09[%)}[“ 0.1(1— sin ¢)*]

FIGURE 2.19
Mode I stress intensity factors for elliptical and semi-elliptical cracks. These solutions are valid only as long as
the crack is small compared with the plate dimensions and a <c.

Anderson, T. L. (2017). Fracture mechanics : Fundamentals and applications, fourth edition. Taylor & Francis Group.
Created from epflch on 2025-04-07 11:47:05.



Copyright © 2017. Taylor & Francis Group. All rights reserved.

Linear Elastic Fracture Mechanics 51

2.6.3 Effect of Finite Size

Most configurations for which there is a closed-form K solution consist of a crack with a
simple shape (e.g., a rectangle or ellipse) in an infinite plate. Stated another way, the crack
dimensions are small compared with the size of the plate; the crack tip conditions are not
influenced by external boundaries. As the crack size increases, or as the plate dimensions
decrease, the outer boundaries begin to exert an influence on the crack tip. In such cases, a
closed-form stress intensity solution is usually not possible.

Consider a cracked plate subjected to remote tensile stress. Figure 2.20 schematically
illustrates the effect of finite width on the crack tip stress distribution, which is repre-
sented by lines of force; the local stress is proportional to the spacing between lines of
force. Since a tensile stress cannot be transmitted through a crack, the lines of force are
diverted around the crack, resulting in a local stress concentration. In the infinite plate,
the line of force at a distance W from the crack centerline has force components in x and y
directions. If the plate width is restricted to 2W, the x force must be zero on the free edge;
this boundary condition causes the lines of force to be compressed, which results in higher
stress intensification at the crack tip.

One technique to approximate the finite width boundary condition is to assume a peri-
odic array of collinear cracks in an infinite plate (Figure 2.21). The Mode I stress intensity
factor for this situation is given by

1/2
K =oma {ZW tan(mﬂ (2.53)
na 2W

The stress intensity approaches the infinite plate value as a/W approaches zero; K; is
asymptotic to a/W = 1.

@ L A ASA A

2w
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FIGURE 2.20

Stress concentration effects due to a through crack in finite and infinite width plates: (a) infinite plate and (b)
finite plate.

Anderson, T. L. (2017). Fracture mechanics : Fundamentals and applications, fourth edition. Taylor & Francis Group.
Created from epflch on 2025-04-07 11:47:05.



Copyright © 2017. Taylor & Francis Group. All rights reserved.

52 Fracture Mechanics: Fundamentals and Applications

FIGURE 2.21
Collinear cracks in an infinite plate subjected to remote tension.

More accurate solutions for a through crack in a finite plate have been obtained from
finite element analysis; solutions of this type are usually fit to a polynomial expression.
One such solution [12] is given by

1/2 2 4
K, =ovJma {sec(;z/j }{1—0.025(&) +0.06(Z)) } (2.54)

Figure 2.22 compares the finite-width corrections in Equations 2.53 and 2.54. The secant
term (without the polynomial term) in Equation 2.54 is also plotted. Equation 2.53 agrees
with the finite element solution to within 7% for a/W < 0.6. The secant correction is much
closer to the finite element solution; the error is less than 2% for a/W < 0.9. Thus, the poly-
nomial term in Equation 2.54 contributes little and can be neglected in hand calculations.

Table 2.4 lists the stress intensity solutions for several common configurations. These K;
solutions are plotted in Figure 2.23. Several handbooks devoted solely to stress intensity
solutions have been published [12-14].

Although stress intensity solutions are given in a variety of forms, K can always be
related to the through crack (Figure 2.4) through an appropriate correction factor:

K, u,my = Yoima (2.55)

where G is a characteristic stress, a the characteristic crack dimension, and Y is a dimen-
sionless constant that depends on geometry and mode of loading.

EXAMPLE 2.4

Show that the K; solution for the single-edge notched tensile panel reduces to Equation
249 whena < W.

Solution
All of the K, expressions in Table 2.4 are of the form

g2

where P is the applied force, B the plate thickness, and f(z/W) is a dimensionless func-
tion. The above equation can be expressed in the form of Equation 2.55:
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FIGURE 2.22
Comparison of finite-width corrections for a center-cracked plate in tension.
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TABLE 2.4

KI Solutions for Common Test Specimens

Geometry

Single-edge notched tension (SENT)

< 4 1

:

Single-edge notched bend (SE(B))
P2 1« S

i
i
I
Center-cracked tension (CCT)

T :

< 2w 2a

l 2

»| P/2

Double-edge notched tension (DENT)

.

C

Compact specimen
Ar

_q—a—>|

—
l«——— |/ ———>

125 W

—

@
v

@{0,752+ 2.oz(i)
cos(na/2W) W
3
+ 0.37(1 —sin ﬂ) }
W

3(S/W)Ja/W [1 9
2(1+2a/W)) (1= (@/wW))* |~

_vﬂv(l_V‘;j{zﬁ—&%(v@)+2'7(Vav)zH

2
4V“”/2W{1.122—0.561(ij—0.205(i)
w w

JI=(a/W)

3 4
+ 0.471(i) +0.190 [ij
W W
[0.886+4.64(iJ—13.32(
w

ol

2+(a/W)

_etasrw) a
(l ~ (u/W))m

W

2

)

Source: Adapted from Tada, H., Paris, P.C., and Irwin, G.R., The Stress Analysis of Cracks Handbook (2nd ed.), Paris

Productions, Inc., St. Louis, 1985.

P a
?K; =——= f| — |, where B is the specimen thickness.
N ( W ) P
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i) e [N 2o
where

e

In the limit of a small flaw, the geometry correction factor in Table 2.4 becomes

lim f[ij = [™0.752+0.37]
w) \w

a/W—0

Thus,

lim Y=1.122
a/W—0

2.6.4 Principle of Superposition

For linear elastic materials, individual components of stress, strain, and displacement are
additive. For example, two normal stresses in the x direction imposed by different external
forces can be added to obtain the total c,,, but a normal stress cannot be summed with a

shear stress. Similarly, stress intensity factors are additive as long as the mode of loading
is consistent. That is,

thotal) — K}A) + K}B) + K}C)

but

Kotary # Ki + Ky + Koy

In many instances, the principle of superposition allows stress intensity solutions for
complex configurations to be built from simple cases for which the solutions are well
established. Consider, for example, an edge-cracked panel (Table 2.4) subject to combined
membrane (axial) loading, P,, and three-point bending, P,. Since both types of loading
impose pure Mode I conditions, the K| values can be added:

K}total) — K?membrane) + K;bend'mg)
1 a a
= | Puful — |+ B fi| —
BJW[ / (WJ bfb(Wﬂ

where f,, and f, are the geometry correction factors for membrane and bending loading,
respectively, listed in Table 2.4 and plotted in Figure 2.23.

(2.56)
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FIGURE 2.24
Determination of K| for a semi-elliptical surface crack under internal pressure, p, by means of the principle of
superposition.

EXAMPLE 2.5

Determine the stress intensity factor for a semi-elliptical surface crack subjected to an
internal pressure, p (Figure 2.24a).

Solution

The principle of superposition enables us to construct the solution from known cases.
One relevant case is the semi-elliptical surface flaw under uniform remote tension,
p (Figure 2.24b). If we impose a uniform compressive stress, —p, on the crack surface
(Figure 2.24¢), K; = 0 because the crack faces close and the plate behaves as if the crack
were not present. The loading configuration of interest is obtained by subtracting the
stresses in Figure 2.24c from those of Figure 2.24b:

K}rz) — K;b) _ K}C)
=hp. 2 F(0)-0=Ap, | 2
.

Example 2.5 is a simple illustration of a more general concept: namely, stresses acting
on the boundary (i.e., tractions) can be replaced with tractions that act on the crack face,
such that the two loading configurations (boundary tractions vs. crack face tractions)
result in the same stress intensity factor. Consider an uncracked body subject to a bound-
ary traction P(x), as illustrated in Figure 2.25. This boundary traction results in a normal
stress distribution p(x) on Plane A-B. To confine the problem to Mode I, let us assume
that no shear stresses act on Plane A-B. (This assumption is made only for the sake of
simplicity; the basic principle can be applied to all three modes of loading.) Now assume
that a crack that forms on Plane A-B and the boundary traction, P(x), remains fixed, as
Figure 2.26a illustrates. If we remove the boundary traction and apply a traction p(x) on the
crack face (Figure 2.26b), the principle of superposition indicates that the applied K; will
be unchanged. That is,

K@ =K +K[? =K{" (since K{” =0)
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NN N\

Uncracked body subjected to an arbitrary boundary traction P(x), which results in a normal stress distribution
p(x) acting on Plane A-B.

P(x)

px)
) I"

2.6.5 Weight Functions

When one performs an analysis to infer a stress intensity factor for a cracked body, the K
value that is computed applies only to one particular set of boundary conditions; different
load cases result in different stress intensity factors for that geometry. It turns out, how-
ever, that the solution to one set of boundary conditions contains sufficient information to
infer K for any other boundary conditions on that same geometry.

Consider two arbitrary loading conditions on an isotropic elastic cracked body in plane
stress or plane strain. For now, we assume that both loadings are symmetric with respect
to the crack plane, such that pure Mode I loading is achieved in each case. Suppose that
we know the stress intensity factor for loading (1) and we wish to solve for K{?, the stress

() (b) (c)
P(x) P(x)

p) —p(x)

W

\ \

FIGURE 2.26
Application of superposition to replace a boundary traction P(x) with a crack face traction p(x) that results in
the same K.
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intensity factor for the second set of boundary conditions. Rice [15] has shown that KW and
K? are related as follows:

E’ oul ouly
K® = '[Ti Ldr+ I E-dA 2.57
b7 ok ) oa A da @57)

where I"and A are the perimeter and area of the body, respectively, and u; are the displace-
ments in x and y directions. Since loading systems (1) and (2) are arbitrary, it follows that
K{? cannot depend on K{” and u{". Therefore, the function

E ou®
h(x;) =~ "
(x:) 2K 9a

(2.58)

where x; represents the x and y coordinates, must be independent of the nature of loading
system (1). Bueckner [16] derived a result similar to Equation 2.58 two years before Rice,
and referred to & as a weight function.

Weight functions are first-order tensors that depend only on the geometry of the cracked
body. Given the weight function for a particular configuration, it is possible to compute K;
from Equation 2.57 for any boundary conditions. Moreover, the previous section invoked
the principle of superposition to show that any loading configuration can be represented
by appropriate tractions applied directly to the crack face. Thus, K; for a 2D cracked body
can be inferred from the following expression:

Ki = [ ptoh) s (2.59)

where p(x) is the crack face traction (equal to the normal stress acting on the crack plane
when the body is uncracked) and T}, is the perimeter of the crack. The weight function, h(x),
can be interpreted as the stress intensity resulting from a unit force applied to the crack
face at x, and the above integral represents the superposition of the K; values from discrete
opening forces along the crack face.

EXAMPLE 2.6

Derive an expression for K; for an arbitrary traction on the face of a through crack in an
infinite plate.

Solution

We already know K; for this configuration when a uniform tensile stress is applied:

K; =o+ma

where a is the half crack length. From Equation 2A.74 and 2A.75, the opening displace-
ment of the crack faces in this case is given by

2c
Y B [x(2a — x)
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where the x—y coordinate axis is defined in Figure 2.27a. Since the crack length is 2a, we
must differentiate u, with respect to 2a rather than a:

du, _,2 | «x
02a) ~ EN2a-x

Thus, the weight function for this crack geometry is given by

1 X

Jra N 2a—-x

If we apply a surface traction of +p(x) on the crack faces, the Mode I stress intensity
factor for the two crack tips is as follows:

2a
1 X
Kigeozn == | pla) 5 5 d
NTa . 20— x
17 I
a—x
Ki(x=0) = 7J.P(x) dx
Nma J x

The weight function concept is not restricted to 2D bodies, Mode I loading, or isotropic
elastic materials. In their early work on weight functions, Rice [15] extended the theory to
three dimensions, Bueckner [16] considered combined Mode I/1Iloading, and both allowed
for anisotropy in the elastic properties. Subsequent researchers [17-22] have shown that
the theory applies to all linear elastic bodies that contain an arbitrary number of cracks.

For mixed-mode problems, separate weight functions are required for each mode: i, i,
and /. Since the stress intensity factors can vary along a 3D crack front, the weight func-
tions also vary along the crack front. That is,

h(x)=%

h, = h,(x;,m) (2.60)
where 0/(=1,2,3) indicates the mode of loading and n is the crack front position.

(a) (b)

y
* (%) T

FIGURE 2.27
Through-crack configuration analyzed in Example 2.6: (a) Definition of coordinate axes and (b) arbitrary trac-
tion applied to crack faces.

Copyright © 2017. Taylor & Francis Group. All rights reserved.

Anderson, T. L. (2017). Fracture mechanics : Fundamentals and applications, fourth edition. Taylor & Francis Group.
Created from epflch on 2025-04-07 11:47:05.



